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We study the dynamics of a radioactive species flowing through a porous material, within the continuous-
time random-walk �CTRW� approach to the modeling of stochastic transport processes. Emphasis is given to
the case where radioactive decay is coupled to anomalous diffusion in locally heterogeneous media, such as
porous sediments or fractured rocks. In this framework, we derive the distribution of the number of jumps each
particle can perform before a decay event. On the basis of the obtained results, we compute the moments of the
cumulative particle distribution, which can be then used to quantify the overall displacement and spread of the
contaminant species.
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I. INTRODUCTION

The investigation of transport processes in inhomoge-
neous geological formations has attracted intense research
efforts, because of its relevance in the context of subsurface
waste management and environmental remediation �1–5�. In
such complex physical systems, the spread of the transported
quantity is often experimentally found to exhibit a nonlinear
growth with respect to time, of the kind �x2�t��� t�, ��1.
This scaling is actually the hallmark of the so-called anoma-
lous diffusion, as opposed to Fickian �normal� diffusion,
where �=1 �3,6�.

The migration of contaminant particles through both ho-
mogeneous and heterogeneous materials has been success-
fully described within the continuous-time random-walk
�CTRW� scheme. In this stochastic model, the trajectory of
each particle is represented as a series of random jumps sepa-
rated by random waiting times, during which the walker
stays at rest in the previously reached position �3,7–10�. For
sake of simplicity, we adopt the common assumption that
jumps and waiting times are independent of each other
�3,11�. The jump lengths are usually drawn from a Gaussian
distribution with �finite� variance �2, where � is a typical
spatial scale depending on the traversed material, and mean
� �3,11�. A forward bias ��0 is often used to model the
contribution of an external advection field �11�. In the con-
text of underground particle flow through porous sediments
or bedrock, the migrating plume is most frequently charac-
terized by an anomalous spread ���1�, induced by the pres-
ence of, for instance, dead ends, stagnation, and obstacles,
which affect the particle dynamics at the microscopic scale
�12–16�. These processes are mirrored in extremely long
trapping times, which, within the CTRW formulation, are
modeled by assuming that the waiting-time distribution has a
power-law decay w�t�� t−1−� with 0���2 �3,8,9�. The
broad distribution of spatial length scales which character-
izes heterogeneous materials can result in a broad �power-
law� distribution of characteristic time scales, so that extreme
events, i.e., anomalously long resting times, have a non-
negligible probability of being sampled. This phenomeno-
logical picture is at the basis of the CTRW formulation
�3,8,11,17�.

In the case of independent jumps and waiting times, the
general form of the CTRW transport equation for the normal-
ized particle concentration P�x , t� can be expressed as fol-
lows:

�

�t
P�x,t� = M��2

2

�2

�x2 − �
�

�x
	P�x,t� , �1�

where the time convolution operator M, with a kernel M�t�,
takes into account possible non-Markovian �memory� effects
due to power-law waiting times �see the Appendix for de-
tails� �3,11�. In particular, one-dimensional transport with a
constant bias is subdiffusive ���1� when 0���1 /2 and
superdiffusive ���1� when 1 /2���2, as shown, e.g., in
�18–20�.

On the other hand, transport in a locally homogeneous
material can be described by assuming that the asymptotic
decay of w�t� is sufficiently fast �as is the case of an expo-
nential distribution�, so that the particles wait on average the
same characteristic time between any successive jumps
�7–9�. In this case, Eq. �1� reduces to the well-known normal
advection-diffusion equation �3,9,11�. Note that the general
formalism of CTRW can account also for a transition from
anomalous to normal diffusion, by adopting for instance a
truncated power-law distribution with an exponential cutoff
for the waiting times; this behavior is often observed in con-
taminant migration �see, e.g., �3,11,21,22��.

The theoretical framework of CTRW is well established
and has been corroborated by a huge amount of experimental
evidence �3,11,17,23–26�. However, due to the subtleties in-
volved in the non-Markovian nature of the memory kernel
�3,29,30�, much ingenuity has been necessary to couple re-
action phenomena with anomalous diffusion �31–34�. A com-
prehensive theoretical treatment, though, is still lacking; see,
e.g., Ref. �31� and references therein.

In this paper, we consider the simple but significant case
of a system composed of two diffusing species, say m and n,
where m is unstable and decays through a nuclear reaction to
n, which is stable. The decay is governed by a Poisson pro-
cess with parameter �. This system can characterize, e.g., the
transport of a radioactive contaminant species leaking from
an underground repository and migrating through the sur-
rounding geological formations. In analogy with the well-
known normal reaction-advection-diffusion equations, it*andrea.zoia@polimi.it
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would be tempting to postulate a generalization of Eq. �1�
with a decoupled structure of the kind

�

�t
Pj�x,t� = M jK jPj�x,t� 	 �Pm�x,t� , �2�

where K j =� j
2�x

2 /2−� j�x is the transport operator and j
=m ,n �35�. However, by suitably extending the derivation of
the CTRW scheme presented in �31� it is possible to show
that the concentrations of m and n obey to

�

�t
Pm�x,t� = M

m
*KmPm�x,t� − �Pm�x,t� �3�

and

�

�t
Pn�x,t� = MnKnPn�x,t� + �Pm�x,t� , �4�

respectively, where the operator

M
m
* = e−�tMme�t �5�

involves also reaction ��� terms �31,32�. Thus, only the equa-
tion for the species n has a decoupled structure, where trans-
port and reaction act independently. It can be shown that
when wj�t� is an exponential distribution the standard
reaction-advection-diffusion equations are recovered,
namely,

�

�t
Pj�x,t� = T jPj�x,t� 	 �Pm�x,t� , �6�

where T j =Dj�x
2−v j�x is the transport operator and Dj, v j are

the diffusion coefficient and the velocity of each species j
=m ,n, respectively �31�.

We have implicitly assumed that particles m can still un-
dergo a nuclear reaction when trapped in a stagnant region,
and further that particles n once created have different
physical-chemical properties from m: these represent reason-
able hypotheses in the context of radionuclide migration. The
concentration profiles corresponding to Eqs. �2� and �3�, re-
spectively, have been contrasted in �31�: discrepancies are
clearly visible, so that in principle it should be possible to
select the proper model on the basis of available experimen-
tal data. Other possible implementations of reaction-
diffusion phenomena within the CTRW formulation exist
�see, e.g., �31,36��, relying on different physical assumptions
and thus leading to different transport equations.

Having this framework in mind, in the following we ad-
dress the issue of computing the number of jumps a diffusing
particle m can perform before decaying to n, and the corre-
sponding overall displacement and spread of the radioactive
species. In Sec. II we outline the mathematical formalism.
Then, in Secs. III and IV we discuss the cases of normal and
anomalous diffusion, respectively. Conclusions are finally
drawn in Sec. V.

II. NUMBER OF JUMPS BEFORE DECAY

Assume that the waiting times between consecutive jumps
are sampled from independent and identically distributed

probability density functions �PDFs� w�t�. Let w̄�u�
=L
w�t�� denote the Laplace transform of w�t�. Then, the
distribution wN�t� of t after N jumps will be given by the
N-fold convolution of w�t� with itself: in the transformed
space, we simply have w̄N�u�= w̄�u�N. Define P�N �T� as the
probability that a particle whose waiting times are distributed
according to w�t� performs N jumps before a final time T.
The basic relation between the counting process P�N �T� and
the PDF w�t� of the waiting times between consecutive
events is

P�N�T� = WN�T� − WN+1�T� , �7�

where WN�T� is the cumulative distribution associated to
wN�t�, evaluated at T �37�. In Laplace space, P�N �u�
=u−1�w̄N�u�− w̄N+1�u��=u−1�w̄�u�N− w̄�u�N+1�. Therefore we
have

P�N�T� = L−11

u
�w̄�u�N − w̄�u�N+1���T� . �8�

Now let f�T�=�e−�T be the PDF of the radioactive decay
events. Then, the probability that particles m perform N
jumps before decaying to n is

P�N� = �
0




P�N�T�f�T�dT . �9�

Integrating once by parts we obtain

P�N� = �
0




e−�TL−1
w̄�u�N��T�dT

− �
0




e−�TL−1
w̄�u�N+1��T�dT . �10�

Thus, interpreting each integral as a Laplace transform
evaluated at u=� with respect to the internal argument
L−1
w̄�u�N��T�, we finally have

P�N� = w̄���N − w̄���N+1. �11�

Now, in order to characterize the displacement and the
spread of the radioactive species m before decay, we are
interested in computing the moments of the cumulative par-
ticle distribution Pm

c �x�, namely,

E�xr� = �� xrPm
c �x�dx , �12�

where

Pm
c �x� = �

0

+


Pm�x,t�dt �13�

and the factor � is used to normalize the moments to the
average radionuclide decay time. These quantities can be in-
tuitively expressed in terms of the moments of the particle
location PDF after N jumps, pN�x�, averaged on the distribu-
tion P�N�,

E�xr� = �
N=0




P�N� � xrpN�x�dx . �14�
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This can be understood as follows. First, note that, if
Qm�x , t� satisfies Eq. �1� �without radioactive decay�, then
Pm�x , t�=Qm�x , t�e−�t satisfies Eq. �3� for the reactive spe-
cies. Within the CTRW formalism, the concentration Qm�x , t�
can be expressed as

Qm�x,t� = �
N=0

+


pN�x���
0

t

wN�t���1 − �
0

t−t�
w�t��dt�	dt�� ,

�15�

where the quantity between square brackets corresponds to
P�N � t� in Eq. �8� �see, e.g., �21��. Then, integrating Pm�x , t�
over time �so to obtain the cumulative distribution Pm

c �x��
and computing the rth moment finally leads to expression
�14�.

Assuming now that the single jump length has a Gaussian
distribution with variance �2 and mean �, then pN�x� is again
a Gaussian distribution with variance N�2 and mean N�.
Therefore, the first and second moments of the cumulative
particle distribution, respectively, read

E�x� = ��N� ,

E�x2� = �2�N� + �2�N2� , �16�

where brackets denote the average with respect to P�N�. Fi-
nally, the radioactive species displacement is provided by the
first moment E�x�, whereas its spread can be expressed on
the basis of the second centered moment S=E�x2�−E�x�2 �1�.

Furthermore, the link between Pm�x , t� and Qm�x , t� al-
lows the moments E�xr� to be expressed as a function of the
memory kernel M�t�. Note indeed that Pm

c �x� can be repre-
sented in terms of the Laplace transform of Qm�x , t�, namely,

Pm
c �x� = Q̄m�x,�� . �17�

Then, it immediately follows that the moments of Pm
c �x� are

given by the Laplace transforms of the moments of Qm�x , t�.
General expressions for multidimensional cases are pro-
vided, for instance, in �21�: in one dimension, we have

E�x� = ��−1M̄��� ,

E�x2� = �2�−1M̄��� + 2�2�−2M̄���2. �18�

III. NORMAL DIFFUSION

We can now specialize this general formalism to the cases
of normal and anomalous diffusion. Within the CTRW ap-
proach, normal diffusion is usually modeled assuming that
w�t� is an exponential distribution with mean � �3,11�. In this
case, the Laplace transform reads w̄�u�= �1+u��−1, so that

the kernel is simply M̄�u�=�−1. Moreover, the convolution
wN�t� is known analytically and is given by the � distribution
�37�

wN�t� =
tN−1e−t/�

�N��N�
, �19�

whose Laplace transform reads

w̄N�u� = w̄�u�N =
1

�1 + u��N . �20�

We can therefore obtain P�N�,

P�N� = w̄���N − w̄���N+1 =
�/�0

�1 + �/�0�N+1 , �21�

where �0=�−1. A numerical example is provided in Fig. 1,
where we compare Eq. �21� with Monte Carlo simulation.
For each simulated particle, a random decay time T is first
drawn from an exponential PDF with mean �0. Then, the
particle trajectory is followed until the cumulative waiting
time �each contribution being drawn from an exponential
PDF with mean �� exceeds T, and the number of performed
jumps is recorded. Parameter values are provided in the fig-
ure caption. Finally, noting that �k=0


 kqk=q / �1−q�2 and
�k=0


 k2qk=q�1+q� / �1−q�3, provided that �q � �1, we can
compute the moments

E�x� =
�

�
�0,

E�x2� � 2
�2

2�
�0 + 2��

�
	2

�0
2. �22�

We assume that the time scale of transport is shorter than the
time scale of decay ���0�, hence the approximation sign.
In formula �22�, �2 /2� is the diffusion coefficient Dm and
� /� is the local particle velocity vm �induced by the forward
bias �� appearing in Eq. �6� �11�. The same result could be
obtained by resorting to expression �18� and substituting the

specific functional form of M̄�u�.
When w�t� is an exponential PDF, the cumulative distri-

bution WN�t� is known exactly, namely,
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FIG. 1. �Color online� The distribution P�N� �Eq. �21�, solid
line� is compared with Monte Carlo simulation �dots� for the fol-
lowing parameters: 105 simulated particles, �0=2, and �=0.1.
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WN�t� =

��N,
t

�
	

��N�
, �23�

where ��N ,x�=�0
xsN−1e−sds is the �lower� incomplete � func-

tion. Then, we can explicitly compute

P�N�T� =

��N,
T

�
	

��N�
−

��N + 1,
T

�
	

��N + 1�
. �24�

This formula can be simplified by resorting to the properties
of the incomplete � function, namely, ��N+1,q�
=N��N ,q�−qNe−q �38�. We thus obtain

P�N�T� =
�T

�
	N

e−T/�

N!
, �25�

which is a Poisson distribution with parameter T /�, as ex-
pected: P�N �T� is indeed a counting process for Markovian
events whose average rate is �−1, over a time interval T. A
numerical example is provided in Fig. 2, where we compare
Eq. �25� with Monte Carlo simulation, which proceeds as in
the previous case, provided that the random decay time is
replaced by a fixed threshold T. Parameter values are given
in the figure caption.

These results can be extended to a broader class of distri-
butions. It can be shown that any waiting time PDF with
finite first moment would lead to an expansion of the kind
w̄�u��1−c1u� to the first order in u, i.e., sufficiently far
from the source �u�1� �9�. The constant c1�0 depends on
the functional form of the PDF. To provide an example, for a
Pareto distribution of the kind w�t�=���t−1−�, with ��1, we
would have w̄�u�=1−c1u�+o�u��, with c1=� / ��−1�. In or-
der to recover normal diffusion, finiteness also of the second
moment of the PDF w�t� is required in the case of a nonva-
nishing bias �, which therefore implies ��2 �18–20�. Then,
it follows that w̄�u�N�1 / �1+c1u��N and formulas �21� and

�22�, which have been derived for the exponential distribu-
tion, would remain asymptotically valid, provided that we
replace �→c1�.

IV. ANOMALOUS DIFFUSION

To illustrate the case of anomalous diffusion, a convenient
choice is assuming w̄�u�=1 / �1+ �u����, with 0���1, so

that w�t�� t−1−�, for t→
, and the kernel reads M̄�u�
=u1−� /�� �3,9�. The parameter � is a characteristic time con-
stant. Then,

w̄N�u� = w̄�u�N =
1

�1 + �u����N �26�

and we can therefore easily compute P�N�,

P�N� = w̄���N − w̄���N+1 =
��/�0��

�1 + ��/�0���N+1 , �27�

where �0=�−1 as before. A numerical example is provided in
Fig. 3, where we compare Eq. �27� with Monte Carlo simu-
lation for �=0.5. The simulation proceeds similarly as in the
case of normal diffusion, the waiting times being now drawn
from a power-law PDF. Parameter values are provided in the
figure caption. We finally obtain the moments

E�x� =
�

���0
�,

E�x2� � 2
�2

2���0
� + 2� �

��	2

�0
2�. �28�

Similarly as in the case of normal diffusion, we assume that
transport occurs on a time scale shorter than the time scale of
decay ���0�, hence the approximation sign. In formula
�28�, �2 /2�� can be regarded as the generalized diffusion
coefficient D

m
* =�m

2 /2�� and � /�� as the generalized local
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FIG. 2. �Color online� The distribution P�N �T� �Eq. �25�, solid
line� is compared with Monte Carlo simulation �dots� for the fol-
lowing parameters: 105 simulated particles, T=2, and �=0.1.
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FIG. 3. �Color online� The distribution P�N� �Eq. �27�, solid
line� is compared with Monte Carlo simulation �dots� for the fol-
lowing parameters: 105 simulated particles, �=0.5, �0=4, and �
=10−3.

A. ZOIA PHYSICAL REVIEW E 77, 041115 �2008�

041115-4



particle velocity vm
* =�m /�� implicitly appearing in Eq. �3�

�9,11�. This is true for the particular functional form of the
memory kernel adopted here. The same result could be ob-
tained by resorting to expression �18� and substituting the

specific functional form of M̄�u�.
In this context, the long-time behavior of the reactive spe-

cies concentration Pm�x , t� can be explicitly obtained. For the
case of a vanishing bias ��=0�, note that the contaminant
concentration Qm�x , t� �without radioactive decay� can be ex-
pressed in closed form by means of the Fox’s H function

Qm�x,t� =
1

4D
m
*t�

H1,1
1,0�� �x�

�D
m
*t���1 − �/2,�/2�

�0,1� � , �29�

provided that the solution is evaluated sufficiently far from
the source �9,39�. The H function admits a computable rep-
resentation as a series expansion, with an exponentially
stretched decay ln Qm�x , t��−��x � / t�/2�1/�1−�/2� �9,39�. Then,
the asymptotic properties of Pm�x , t� immediately follow
from Pm�x , t�=Qm�x , t�e−�t.

In some specific cases, analytic results can be obtained for
the distribution P�N �T�. To provide an example, for the
Lévy-Smirnov PDF w�t�= �� /4��1/2e−�/4tt−3/2, which has a
power-law decay with �=0.5 �37�, the inverse Laplace trans-
form appearing in Eq. �8� can be explicitly evaluated, so that
P�N �T� can be expressed in closed form as

P�N�T� = ��N + 1

2
� �

T
	 − ��N

2
� �

T
	 , �30�

where ��x�=2�−1/2�0
xe−s2

ds is the error function. A numeri-
cal example is provided in Fig. 4, where we compare Eq.
�30� with Monte Carlo simulation. Parameter values are pro-
vided in the figure caption. In the general case, P�N �T� can
be computed from definition �8� with arbitrary accuracy by
resorting to a numerical inverse Laplace transform algorithm
�40�.

Similarly as for the case of normal diffusion, it can be
shown that any PDF with power-law decay and infinite first
moment would asymptotically lead to a Laplace transform of
the kind w̄�u�=1−c��u���+o�u�, truncating the expansion to
the first nonconstant term for u�1, i.e., evaluating the con-
taminant concentration sufficiently far from the source �9�.
The constant c��0 depends on the specific details of w�t�:
for the case of the Pareto PDF, for example, c�=��1−��.
The expression of w̄�u� can be regarded as the first order
expansion of a PDF w̄�u��1 / �1+ �u����. Therefore, formu-
las �27� and �28� would remain asymptotically valid, pro-
vided that we replace ��→c���.

V. CONCLUSIONS

In this paper we have considered reaction-advection-
diffusion processes within the CTRW framework, in both
homogeneous and heterogeneous media, the latter giving rise
to anomalous transport for the migrating species. We have
analytically derived the distribution of the number of jumps
that each particle can perform before undergoing a reaction
event. On the basis of this result, we have determined the
moments of the cumulative particle concentration, which al-
low the overall displacement and spread of the reacting spe-
cies to be quantified. Though we have focused on the case of
radioactive contaminant particle transport, by virtue of its
interest in the field of nuclear waste migration from under-
ground repositories, the proposed framework could be ap-
plied to other physical systems where the reaction term is
linearly proportional to the concentration of the reacting spe-
cies, such as first order chemical reactions.
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APPENDIX: THE MEMORY KERNEL

Let us briefly recall the definition of the Laplace trans-
form,

L
g�t���u� = ḡ�u� = �
0




e−utg�t�dt . �A1�

The convolution operator M is defined as

Mg�t� = �
0

+


M�t − t��g�t��dt�, �A2�

where the kernel M�t� in the Laplace transformed space sat-
isfies

M̄�u� = u
w�u�

1 − w�u�
�A3�
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FIG. 4. �Color online� The distribution P�N �T� �Eq. �30�, solid
line� is compared with Monte Carlo simulation �dots� for the fol-
lowing parameters: 105 simulated particles, �=0.5, T=2, and �
=10−3.
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for a sufficiently well-behaved function g�t� �3,11�. It imme-
diately follows that

L
Mg�t�� = M̄�u�ḡ�u� . �A4�

The properties of M depend on the waiting-time distribution
w�t�. In the direct space, when w�t� has an algebraic decay,

M�t� asymptotically behaves as a power-law kernel, account-
ing for long-time correlations; these in turn induce non-
Markovian �memory� effects. On the contrary, when w�t� is
an exponential distribution the operator reduces to a con-
stant, independent of time, so that the memory effects disap-
pear, the transport process becomes Markovian, and normal
diffusion is recovered �3,11�.
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